The unusual dynamics of parasite actin result from isodesmic polymerization

نویسندگان

  • Kristen M. Skillman
  • Christopher I. Ma
  • Daved H. Fremont
  • Karthikeyan Diraviyam
  • John A. Cooper
  • David Sept
  • L. David Sibley
چکیده

Previous reports have indicated that parasite actins are short and inherently unstable, despite being required for motility. Here we re-examine the polymerization properties of actin in Toxoplasma gondii, unexpectedly finding that it exhibits isodesmic polymerization in contrast to the conventional nucleation-elongation process of all previously studied actins from both eukaryotes and bacteria. Polymerization kinetics of actin in T. gondii lacks both a lag phase and critical concentration, normally characteristic of actins. Unique among actins, the kinetics of assembly can be fit with a single set of rate constants for all subunit interactions, without need for separate nucleation and elongation rates. This isodesmic model accurately predicts the assembly, disassembly and the size distribution of actin filaments in T. gondii in vitro, providing a mechanistic explanation for actin dynamics in vivo. Our findings expand the repertoire of mechanisms by which actin polymerization is governed and offer clues about the evolution of self-assembling, stabilized protein polymers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation

Apicomplexan actin is important during the parasite's life cycle. Its polymerization kinetics are unusual, permitting only short, unstable F-actin filaments. It has not been possible to study actin in vivo and so its physiological roles have remained obscure, leading to models distinct from conventional actin behaviour. Here a modified version of the commercially available actin-chromobody was ...

متن کامل

Actin depolymerizing factor controls actin turnover and gliding motility in Toxoplasma gondii

Apicomplexan parasites rely on actin-based gliding motility to move across the substratum, cross biological barriers, and invade their host cells. Gliding motility depends on polymerization of parasite actin filaments, yet ∼98% of actin is nonfilamentous in resting parasites. Previous studies suggest that the lack of actin filaments in the parasite is due to inherent instability, leaving uncert...

متن کامل

Minimal requirements for actin filament disassembly revealed by structural analysis of malaria parasite actin-depolymerizing factor 1.

Malaria parasite cell motility is a process that is dependent on the dynamic turnover of parasite-derived actin filaments. Despite its central role, actin's polymerization state is controlled by a set of identifiable regulators that is markedly reduced compared with those of other eukaryotic cells. In Plasmodium falciparum, the most virulent species that affects humans, this minimal repertoire ...

متن کامل

Toxofilin, a novel actin-binding protein from Toxoplasma gondii, sequesters actin monomers and caps actin filaments.

Toxoplasma gondii relies on its actin cytoskeleton to glide and enter its host cell. However, T. gondii tachyzoites are known to display a strikingly low amount of actin filaments, which suggests that sequestration of actin monomers could play a key role in parasite actin dynamics. We isolated a 27-kDa tachyzoite protein on the basis of its ability to bind muscle G-actin and demonstrated that i...

متن کامل

Malaria parasite actin polymerization and filament structure.

A novel form of acto-myosin regulation has been proposed in which polymerization of new actin filaments regulates motility of parasites of the apicomplexan class of protozoa. In vivo and in vitro parasite F-actin is very short and unstable, but the structural basis and details of filament dynamics remain unknown. Here, we show that long actin filaments can be obtained by polymerizing unlabeled ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013